10,302 research outputs found

    Alkali Line Profiles in Degenerate Dwarfs

    Full text link
    Ultracool stellar atmospheres show absorption by alkali resonance lines severely broadened by collisions with neutral perturbers. In the coolest and densest atmospheres, such as those of T dwarfs, Na I and K I broadened by molecular hydrogen and helium can come to dominate the entire optical spectrum. Their profiles have been successfully modelled with accurate interaction potentials in the adiabatic theory, computing line profiles from the first few orders of a density expansion of the autocorrelation function. The line shapes in the emergent spectrum also depend on the distribution of absorbers as a function of depth, which can be modelled with improved accuracy by new models of dust condensation and settling. The far red K I wings of the latest T dwarfs still show missing opacity in these models, a phenomenon similar to what has been found for the Na I line profiles observed in extremely cool, metal-rich white dwarfs. We show that the line profile in both cases is strongly determined by multiple-perturber interactions at short distances and can no longer be reproduced by a density expansion, but requires calculation of the full profile in a unified theory. Including such line profiles in stellar atmosphere codes will further improve models for the coolest and densest dwarfs as well as for the deeper atmosphere layers of substellar objects in general.Comment: VI Serbian Conference on Spectral Line Shapes in Astrophysics; to be published by the American Institute of Physics, eds. Milan S. Dimitrijevic and Luka C. Popovic; 6 pages, 6 figure

    Quasi-molecular lines in Lyman wings of cool DA white dwarfs; Application to FUSE observations of G231-40

    Full text link
    We present new theoretical calculations of the total line profiles of Lyman alpha and Lyman beta which include perturbations by both neutral hydrogen AND protons and all possible quasi-molecular states of H_2 and H_2^+. They are used to improve theoretical modeling of synthetic spectra for cool DA white dwarfs. We compare them with FUSE observation of G231-40. The appearance of the line wings between Lyman alpha and Lyman beta is shown to be sensitive to the relative abundance of hydrogen ions and neutral atoms, and thereby to provide a temperature diagnostic for stellar atmospheres and laboratory plasmas.Comment: 6 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    The Effective temperature scale of M dwarfs from spectral synthesis

    Full text link
    We present a comparison of low-resolution spectra of 60 stars covering the whole M-dwarf sequence. Using the most recent PHOENIX BT-Settl stellar model atmospheres (see paper by F. Allard, in this book) we do a first quantitative compari- son to our observed spectra in the wavelength range 550-950 nm. We perform a first confrontation between models and observations and we assign an effective tempera- tures to the observed M-dwarfs. Teff-spectral type relations are then compared with the published ones. This comparison also aims at improving the models' opacities.Comment: To be published in the on-line version of the Proceedings of Cool Stars 16 (ASP Conference Series) New version with bibliography correcte

    Progress in Modeling Very Low Mass Stars, Brown Dwarfs, and Planetary Mass Objects

    Full text link
    We review recent advancements in modeling the stellar to substellar transition. The revised molecular opacities, solar oxygen abundances and cloud models allow to reproduce the photometric and spectroscopic properties of this transition to a degree never achieved before, but problems remain in the important M-L transition characteristic of the effective temperature range of characterizable exoplanets. We discuss of the validity of these classical models. We also present new preliminary global Radiation HydroDynamical M dwarfs simulations.Comment: Submitted to Mem. S. A. It. Supp

    Steady-state MreB helices inside bacteria: dynamics without motors

    Full text link
    Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasi-static evolution of the helical pitch with cell growth, as well as timescales of helix turnover and denovo establishment. We find that while the body of a polarized MreB helix treadmills towards its slow-growing end, the fast-growing tips of laterally associated protofilaments move towards the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.Comment: 7 figures, 1 tabl

    Photospheric properties and fundamental parameters of M dwarfs

    Full text link
    M dwarfs are an important source of information when studying and probing the lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning limit. Being the most numerous and oldest stars in the galaxy, they carry fundamental information on its chemical history. The presence of molecules in their atmospheres, along with various condensed species, complicates our understanding of their physical properties and thus makes the determination of their fundamental stellar parameters more challenging and difficult. The aim of this study is to perform a detailed spectroscopic analysis of the high-resolution H-band spectra of M dwarfs in order to determine their fundamental stellar parameters and to validate atmospheric models. The present study will also help us to understand various processes, including dust formation and depletion of metals onto dust grains in M dwarf atmospheres. The high spectral resolution also provides a unique opportunity to constrain other chemical and physical processes that occur in a cool atmosphere The high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide a unique opportunity to measure their fundamental parameters. We have performed a detailed spectral synthesis by comparing these high-resolution H-band spectra to that of the most recent BT-settl model and have obtained fundamental parameters such as effective temperature, surface gravity, and metallicity (Teff, log g and [Fe/H]) respectively.Comment: 15 pages, 10 figures, accepted for publication in A&

    Selective coupling of optical energy into the fundamental diffusion mode of a scattering medium

    Get PDF
    We demonstrate experimentally that optical wavefront shaping selectively couples light into the fundamental diffusion mode of a scattering medium. The total energy density inside a scattering medium of zinc oxide (ZnO) nanoparticles was probed by measuring the emitted fluorescent power of spheres that were randomly positioned inside the medium. The fluorescent power of an optimized incident wave front is observed to be enhanced compared to a non-optimized incident front. The observed enhancement increases with sample thickness. Based on diffusion theory, we derive a model wherein the distribution of energy density of wavefront-shaped light is described by the fundamental diffusion mode. The agreement between our model and the data is striking not in the least since there are no adjustable parameters. Enhanced total energy density is crucial to increase the efficiency of white LEDs, solar cells, and of random lasers, as well as to realize controlled illumination in biomedical optics.Comment: 5 pages, 5 figure

    Atmospheric Analysis of the M/L- and M/T-Dwarf Binary Systems LHS 102 and Gliese 229

    Get PDF
    We present 0.9-2.5um spectroscopy with R~800 and 1.12-1.22um spectroscopy with R~5800 for the M dwarfs Gl 229A and LHS 102A, and for the L dwarf LHS 102B. We also report IZJHKL' photometry for both components of the LHS 102 system, and L' photometry for Gl 229A. The data are combined with previously published spectroscopy and photometry to produce flux distributions for each component of the kinematically old disk M/L-dwarf binary system LHS 102 and the kinematically young disk M/T-dwarf binary system Gliese 229. The data are analyzed using synthetic spectra generated by the latest "AMES-dusty" and "AMES-cond" models by Allard & Hauschildt. Although the models are not able to reproduce the overall slope of the infrared flux distribution of the L dwarf, most likely due to the treatment of dust in the photosphere, the data for the M dwarfs and the T dwarf are well matched. We find that the Gl 229 system is metal-poor despite having kinematics of the young disk, and that the LHS 102 system has solar metallicity. The observed luminosities and derived temperatures and gravities are consistent with evolutionary model predictions if the Gl 229 system is very young (age ~30 Myr) with masses (A,B) of (0.38,>0.007)M(sun), and the LHS 102 system is older, aged 1-10 Gyr with masses (A,B) of (0.19,0.07)M(sun).Comment: 29 pages incl. 13 figures and 5 tables;; accepted for publication in MNRA
    • 

    corecore